Climate change

Climate change matters

We, at Cathay Pacific are committed to reducing our carbon emissions and mitigating the impact air travel has on climate change. The use of non-renewable fossil fuels is not only a major operating cost for us, but it also has a significant environmental impact.

There are increasing economic, environmental and social incentives for us to be a more sustainable airline. Our belief is that implementing sustainable solutions, such as fuel efficiency, new fleet and sustainable biofuels will help address our overall environmental impacts.

We agree with our stakeholders that climate change is one of the company’s highest environmental challenge and we should address it as a priority. Therefore, we will continue to manage the long-term impacts of our carbon footprint in an innovative manner.

What our stakeholders think

Not surprisingly, climate change, carbon emissions and energy efficiency remain as the primary environmental focus for stakeholders. In particular, the volatility of fuel prices and supply is perceived to have a high impact on our business, along with increasing regulations such as the emergence of different Emissions Trading Schemes, and the development of a global market-based measure, the Carbon Offset Reduction Scheme for International Aviation (CORSIA).

In particular, biofuels will play a major role in helping us achieve our emissions goal. Climate change has been a material issue for us for a long time and stakeholders recognise our dedication in prioritising innovative ways to improve our environmental impact. However, at the same time, stakeholders expect us to adopt targets that exceed those of the industry, which we have since 2012 in terms of our efficiency improvement target.
There is an expectation for us to further enhance our approach to mitigating climate change effects, especially with staff. We understand the need for us to engage more proactively and publicly on this issue.

Performance update

Greenhouse gas emission

Scope 1 emissions

17.2 million tonnes
(99.50%)
Aviation fuel, fuel combustion and towngas

Scope 2 emissions

80,123 tonnes
(0.50%)
Electricity and towngas

Global CO₂ emissions and fuel efficiency improvement – Cathay Pacific group fleet

* includes Cathay Dragon since 2007
† includes testing, training, and wet-lease flights since 2009
Fleet management

We have

202 aircraft
10 new A350-900s were delivered to us in 2016.

New generation aircraft are

20–25% more fuel efficient than older models.

We retired 6 less efficient aircraft from the fleet in 2016.

3 Airbus A340–300s
3 Boeing 747–440s

FLY greener

9 years ago, in 2007, we launched FLY greener.

14,100 tCO₂

was offset in 2016. We offset all staff business travel.
Aircraft emissions

In 2009, according to the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), aviation accounted for 649 million tonnes of the global total of around 30 billion tonnes of CO₂, equivalent to 2% of global emissions from human activity. As aviation grows to meet increasing demand, the IPCC has forecasted that by 2050, the total of aviation emissions could rise to 3%. Whilst the forecast for 2050 is an estimation, it does highlight the challenge the aviation industry will face over the next 40 years.

Uncertainty remains within the scientific community regarding the full impact of other greenhouse gases (GHGs) in the upper atmosphere. In 2007, the IPCC estimated these effects to be two to four times greater than those of aviation's CO₂ emissions alone, and by 2050, aviation's total climate change contribution, including CO₂ and other effects, could rise to 5% (with a worst-case scenario of 15% of human emissions). However, the IPCC acknowledges that there is still uncertainty and the non-CO₂ impacts of aviation are the subject of intensive academic research.
Non-CO₂ Emissions from Aircraft

<table>
<thead>
<tr>
<th>Non-CO₂ Emissions</th>
<th>Nature of Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
<td>Increases the GHG ozone: warming effect</td>
</tr>
<tr>
<td></td>
<td>Destruction of methane: cooling effect</td>
</tr>
<tr>
<td>Water Vapour</td>
<td>Forms condensation trails: in exhaust air. Warming effects dependent on altitude, location and atmospheric conditions</td>
</tr>
<tr>
<td>Sulphate Aerosols</td>
<td>Reflect incoming solar radiation: cooling effects</td>
</tr>
<tr>
<td>Soot</td>
<td>Small warming effect</td>
</tr>
</tbody>
</table>

Source: IPCC

Fuel efficiency strategy

Being highly fuel efficient has long been an embedded culture in our standard operational procedures since our first non-stop long-haul flights from Hong Kong to London in 1980 and Hong Kong to Vancouver in 1983. When we reduced the weight onboard these two routes, it enabled us to offer a unique and competitive service to our customers. Over 35 years, various teams within Cathay Pacific and Cathay Dragon have worked on implementing innovative initiatives into the airline’s standard operating procedures, such as a fuel monitoring system; use of engine core washing; introduction of lighter weight onboard equipment (for example food carts and cargo container boxes); and utilising flight techniques and flight planning systems that reduce the use of This has allowed us to operate our aircraft in a highly efficient manner, and to a certain extent, has played a part in helping to build resilience in the face of adverse conditions, such as additional carbon charges and rising fuel prices.

Our fuel efficiency initiatives in the past three decades reflect the IATA four-pillar strategy:

1. Technology
 - Airframe, engine
 - New fuels

2. Operations
 - Maximum efficiency
 - Minimise weight

3. Infrastructure
 - Air routes, ATM
 - Airport procedures

4. Economic instruments
 - Offsets & trading
 - Incentives
Cathay Pacific and Cathay Dragon performance

In 2016, Cathay Pacific and Cathay Dragon were collectively responsible for emitting 17.2 million tonnes* of carbon dioxide (CO₂) from jet fuel burn, an increase of 0.8% from 2015. Meanwhile, there was an increase of 0.9% for the amount of passengers and cargo carried on flight. Our fuel efficiency remained steady in relation to capacity (available tonne kilometre, ATK) and traffic carried (revenue tonne kilometre, RTK) respectively over 2015. Since 1988, our total fuel efficiency has improved by 16.8%* and 24.9% per ATK and RTK respectively.

* includes Cathay Dragon since 2007
† includes testing, training, and wet-lease flights since 2009
New initiatives in 2016

Here is an overview of some of our new initiatives in improving our fuel efficiency.

First A350 delivered

In 2016, we took delivery of 10 Airbus A350-900XWB aircraft, which are equipped with our latest cabins, seat entertainment systems and inflight connectivity. The combination of advanced aerodynamics, lightweight composite materials and the latest Rolls-Royce Trent XWB engines resulted in a 25% reduction in fuel burn compared to existing wide-body aircraft. As well as reducing operating costs, the highly efficient A350 also benefits the environment, with a corresponding cut in CO₂ emissions, reduced NOₓ emissions and a smaller external noise footprint.

Final flight for Boeing 747-400 “Queen of the Skies”

After more than 37 years of service, the iconic Boeing 747 flew its final journey between Hong Kong and Tokyo in October 2016. With its ability to carry more people for far greater distances than its predecessors, the aircraft enabled Cathay Pacific to rapidly expand its network significantly during the 1980s and early 1990s. Now, the more fuel-efficient Airbus A350s and Boeing 777-300ERs will fly in place of the Boeing 747. The Airbus A350s and Boeing 777-300ERs forms the primary backbone of our long-haul fleet.

In addition, we have continued to progress several initiatives to optimise our operations and infrastructure pillars of our climate change strategy.
eEnabled system updates
We continued with the eEnabled Aircraft Programme to facilitate seamless global aircraft connectivity and data sharing across our airlines. We began evaluating other technology solutions, which may reduce the complexity of deployment and enable us to roll out the programme sooner.

Flight efficiency working group
In order to better coordinate, manage and improve our fuel efficiency, we established the Flight Efficiency Working Group in 2014. The cross-departmental team focused on projects in the following areas:

- Aircraft operations
- Aircraft weight
- Aircraft performance
- Airspace efficiency

1. Reduced Engine Taxi-In (RETI)
 Total reduced engine operation remained steady, which amounted to a saving of over 3,100 tonnes of fuel.

2. Lower cabin window blinds
 When the window blinds are lowered during disembarkation, it helps to reduce the rate of temperature, which is beneficial during the heated summer months. A banner ad was introduced in our inflight entertainment system to promote the initiative with our passengers.

3. Aircraft data analytics
 In partnership with Rolls-Royce, we collected various inflight data parameters across the Cathay Pacific and Cathay Dragon fleet. The result of the data analytics will help us identify areas where we can further improve our operational efficiency.

4. Engine core washing
 We continued the regular washing of our engines, which removes airborne dust, grease, and other contaminants. A dirty engine reduces its efficiency, leading to more fuel burn and, in turn, more pollution and higher operating costs. Beginning in 2016, to further reduce fuel consumption and improve carbon emission, we have started increasing the frequency of engine washings from every 11 to 16 weeks, to 6 to 11 weeks. We have also begun to implement engine washing at certain outports to increase efficiency, utilising otherwise unused ground time.
Past initiatives

The following are some fuel efficiency improvements implemented in the past 10 years:

<table>
<thead>
<tr>
<th>Examples of Cathay Pacific & Cathay Dragon initiatives on fuel efficiency</th>
<th>Emission savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced engine taxi-in (RETI) after landing</td>
<td>11,000 tCO₂/year</td>
</tr>
<tr>
<td>Weight reduction from inflight magazine paper grammage reduction</td>
<td>880 tCO₂/year</td>
</tr>
<tr>
<td>Modification of engines on our A330 fleet</td>
<td>11,000 tCO₂/year</td>
</tr>
<tr>
<td>Utilising and manually fine-tuning the flexitrack approach – use of real-time wind data to generate flexible flight tracks for flight planning</td>
<td>607 tCO₂ on monitored flights in 2010</td>
</tr>
<tr>
<td>Using alternative base coat exterior paint</td>
<td>Depends on aircraft type e.g. 134 tCO₂ on the A340 in 2008</td>
</tr>
<tr>
<td>Core washing engines</td>
<td>105,700 tCO₂ since 2010</td>
</tr>
<tr>
<td>Weight reductions from catering and food equipment (e.g. lightweight cargo and baggage containers and food carts, cutlery, etc.)</td>
<td>78,460 tCO₂/year since 2004</td>
</tr>
</tbody>
</table>

The following are some route improvement initiatives implemented by Cathay Pacific and Cathay Dragon in the past 10 years:

<table>
<thead>
<tr>
<th>Examples of Cathay Pacific & Cathay Dragon route improvements</th>
<th>Emission savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia and Pacific Initiative to Reduce Emissions (ASPIRE) – demonstration flights in 2013</td>
<td>Up to 3,150 tCO₂/year</td>
</tr>
<tr>
<td>Flexible entry/exit points implementation in China for European flights (Y-1 route)</td>
<td>14,000 tCO₂/year</td>
</tr>
<tr>
<td>North Pacific route improvements</td>
<td>835 tCO₂/year</td>
</tr>
<tr>
<td>Flexible entry/exit points implementation in China for European flights (MORIT route)</td>
<td>0.6 to 0.9 tCO₂ per flight</td>
</tr>
<tr>
<td>Re-design of flight paths over the Pearl River Delta</td>
<td>54,000 tCO₂/year</td>
</tr>
<tr>
<td>Further North Pacific route improvements (SFO-HKG)</td>
<td>792 tCO₂/year</td>
</tr>
</tbody>
</table>
Contributing to climate change science

In 2013, one of our Airbus A330-300 aircraft became the first of its type to be equipped with In-service Aircraft for a Global Observing System (IAGOS) scientific instruments. Since 2013, the aircraft has operated over 1,400 flights, primarily on Australian and Middle East routes from Hong Kong. The Airbus A330-300 is manufactured to complement other similar commercial aircrafts operating on other routes around the world, which will help build a better global picture of climate change. Data on ozone, carbon monoxide, water vapour, and clouds is recorded during take-off, cruising, and landing. The results are transmitted from the aircraft on a daily basis to the IAGOS central database for access by science and policy users, including the provision of useful real time data for weather prediction, air quality forecasting and climate models. The growing IAGOS database will continue to improve our understanding of cloud processes and their impact on climate.

More information can be found at www.iagos.org.
Ground emissions management

We have been working tirelessly on our ground operations to reduce our carbon footprint, primarily from electricity consumption of our buildings, equipment stock and vehicular emissions.

We support the Airport Authority Hong Kong’s new 10% reduction target for the next five-year period from 2016 to 2020, which is an extension of the original five-year period from 2010 to 2015. During this time, a 25.6% reduction in intensity per workload was achieved across the participating business partners against a 25% target.

2016 initiatives

Our headquarter buildings, Cathay Pacific City and Cathay Dragon House, are based at Chek Lap Kok, near Hong Kong International Airport. They cover a total floor area of 193,000 m² and mainly comprised offices, flight training centres and stores. Both premises are certified to the ISO14001 international environmental management standard. They are both equipped with a building management system. Cathay City also has automatic lighting, air-conditioning controls and motion sensors in conference rooms.

In 2016, the total electricity consumption at Cathay Pacific City and Cathay Dragon House was 34,917,670 kWh and 7,133,624 kWh respectively, representing a decrease of 1.5% and an increase of 1.3% respectively. We continued to invest in energy saving measures such as chilled water system optimisation and LED lighting replacements. The incremental increase in consumption at Cathay Dragon House was mainly due to increased training and recruitment activities. There is also a 500-room staff hotel, the Headland, adjacent to Cathay Pacific City.

In 2016, 14 electric vehicle chargers were installed at Cathay Pacific City and Cathay Dragon House, amounting to a total of 21.
Our subsidiaries

Hong Kong Airport Services Limited (HAS)
HAS serves 21 airlines at HKIA and operates the largest vehicle fleet in the Group. HAS is committed to reducing carbon emissions from its fleet. In 2011, HAS started the first term of a three-year Ground Support Equipment (GSE) Replacement Programme. In 2017, we will continue with our fleet renewal programme by placing an order for three fuel-efficient lower deck loaders and three light buses.

Our GPS tracking system allows us to efficiently manage our fuel consumption. This year there was a decrease of 2.7% in fuel consumption per flight in comparison to the previous year. We expect additional improvement in fuel efficiency as the GPS tracking system is expanded.

Cathay Pacific Catering Services Limited (CPCS)
CPCS serves 41 airlines and is one of the largest flight kitchens in the world. Through equipment replacement, maintenance and optimisation projects in 2016, 2,500 tonnes of CO₂ emissions have been reduced. Some of the initiatives included the installation of more than 2,000 pieces of LED lights, installing two water-cooled chillers to replace older and less efficient equipment. In addition to this, the insulation of chilled pipes, suction pipes, and air ducts has also been replaced in order to reduce lost energy, and optimise the cooling and ventilation demand of the air handling unit in order to avoid over consumption of electricity.

The newly built Phase II facility, which commenced operation in December 2016, is undergoing certification for BEAM Plus Silver for new buildings.

Cathay Pacific Services Limited (CPSL)
CPSL has been operating the Cathay Pacific Cargo Terminal since 2013. With design features to support sustainability, CPSL is committed to support green operations and engage our stakeholders via different initiatives and measures.

Electricity usage was 21.7 kWh per tonnage in 2016, representing a 0.5% decrease against 2015. Some of the energy efficiency initiatives implemented in 2016 included retrofitting over 1,200 lighting fixtures with more energy efficient ones, such as LED lights and induction lamps as well as increasing charging facilities to cope with the growth of electric vehicle use.
Vogue Laundry Services

Vogue Laundry Services employs over 560 staff and serves over 23 airlines, 17 hotels and has a daily output of 251,000 items, equivalent to 71 tonnes of laundry. It is the first laundry in Hong Kong to be certified to the ISO 14001 environmental management standard and the OHSAS 18001 occupational health and safety standard.

Over the past few years, Vogue has been actively exploring ways to reduce emissions through active carbon absorption in the dry cleaning machines and from perchloroethylene, which is a volatile organic compound (VOC) consumed in the dry cleaning process. Consumption of this solvent was decreased by 12% in 2016. Vogue also switched from diesel boiler to a dual-fuel boiler which utilises Towngas and ultra-low sulphur diesel at a 68:32 ratio which has helped to reduce CO₂ emissions.

Vogue runs a fleet of 23 vehicles for its collection and delivery services. In 2016, six Euro II trucks were replaced by two Euro V trucks. In 2017, four new Euro V trucks will be added to the fleet and three Euro III trucks will be disposed. Since March 2016, the use of B5 biodiesel has been trialled on one of the delivery routes.
Sustainable fuels

In spite of the current comparatively low fuel price environment, Cathay Pacific remains committed to the biofuel agenda as part of our long-term strategy in reducing our total climate change impact. We work with relevant partners to identify sustainable biofuels, which meet or exceed the energy characteristics of kerosene and offer substantial improvement to emissions performance. However, we are well aware that such fuel must be produced in a sustainable way.

We are a member of various organisations, such as the Sustainable Aviation Fuel Users Group (SAFUG), Roundtable on Sustainable Biomaterials (RSB), the FAA Centre of Excellence for Alternative Jet Fuels, and the Commercial Alternative Aviation Fuels Initiative (CAAFI). We all share the common desire to accelerate the research, development, and commercialisation of sustainable aviation biofuels.

Sustainable fuel strategy

Since the appointment of a dedicated Cathay Pacific Biofuel Manager in 2011, we have had a robust sustainable aviation fuels strategy in place and are progressing several projects, a number of which focus on the use of waste and residues as a source of feedstock for the production of fuels.

Cathay Pacific is the first airline to have invested in a sustainable biofuel developer. We began our investment in the US-based Fulcrum BioEnergy Inc. in 2014. The investment will help us work towards achieving an industry target of carbon-neutral growth in 2020. Fulcrum is a world pioneer in the development and commercialisation of converting municipal solid waste into sustainable aviation fuel.
We have negotiated a long-term supply agreement with Fulcrum for an initial 375 million US gallons of sustainable aviation fuel over 10 years, which will meet all the airline’s technical requirements, specifications and sustainability criteria.

From waste to wing

As an alternative to sending household waste to landfill, it can be converted to sustainable bio jet fuel. Cathay Pacific is an equity investor in Fulcrum BioEnergy, a biofuel developer pioneering the development and commercialization of technology to convert waste to renewable transportation fuel.

1. Waste is collected.
2. Recyclable material is segregated for recycling. After further processing, the remaining material suitable for conversion into fuel is sent to a Fulcrum Retinery.
3. Waste is converted to sustainable biofuel via a thermochemical process.
4. As a ‘drop-in’ replacement, the new bio jet fuel meets the same technical standards as traditional jet fuel made from crude oil.
5. Fuel is blended with traditional jet fuel, tested, and delivered to airport and aircraft as normal.

Greenhouse gas emissions -80%*

* Compared to traditional jet fuel, sustainable biofuel can reduce life cycle greenhouse gas emissions by up to 90%.
First Cathay Pacific flight powered by biofuels

The first Cathay Pacific flight powered by biofuels arrived at HKIA in May. This flight was operated on a newly delivered Airbus A350-900 and was the world’s longest biofuel flight to date. The following 21 delivery flights from Toulouse will also use a 10% blend of biofuel. This biofuel is made from sustainable sugars, using a process of fermentation whereby modified yeast produces hydrocarbons that can be processed into jet fuel. Not only does this fuel have a lower life cycle CO₂ than fossil fuel, but biofuel also burns cleaner. The intent of using biofuel on these flights is for Cathay to become accustomed to flying on renewable fuel as we move closer to larger volumes becoming available over the next three to five years.

The combination of a modern fuel-efficient aircraft and the use of biofuels will result in some of the lowest net CO₂ emissions for commercial aircraft in service today.

Jeff Ovens
Bio Fuel Procurement Manager
Construction of Fulcrum BioEnergy Inc.

Construction of the initial phase of Fulcrum's first commercial scale plant was completed in May 2016. This feedstock pre-processing facility will sort and separate waste originally destined for landfill and process them into a form suitable for bio jet fuel production. With the capacity to process 50 tonnes per hour, the facility automatically removes recyclable items such as metal and plastic for onward recycling and shreds the remaining non-recyclable waste into small pieces. Construction of phase two comprising the fuel production facility is scheduled to begin in 2017.
Climate Change Policy

Since 2008, Cathay Pacific, along with other industry players, has been calling for the regulation of aviation emissions from a global sectoral scheme, under the United Nation's International Civil Aviation Organization (ICAO). We believe a sectoral approach is more appropriate and effective for the global nature of the industry, rather than through regional schemes such as the EU ETS.

In 2014, ICAO began the development of a Global Market Based Measure (MBM) to address the growth of international aviation emissions.

In October 2016 at the ICAO 39th Assembly, global aviation industry reached a landmark climate agreement to put in place the world’s first mandatory carbon offsetting scheme covering an entire industry. This is an important regulation that will require all international airlines to offset industry’s growth in carbon emissions, which is set to commence in 2020. This will help towards achieving the industry target of carbon neutral growth (CNG) by 2020.

We are active members of several global groups, such as the Global Market-based Measure Technical Task Force (GMTF), which comprised representatives from ICAO member states, industry and NGOs. Cathay Pacific is continually and proactively engaging in dialogue revolving around the implementation of a global MBM for aviation emissions under ICAO. We are part of a small group of IATA carriers that are members of the expert groups looking at specific technical aspects of a global MBM through the ICAO Advisory Committee on Environmental Protection (CAEP), together with NGOs, states and academia. We are also part of IATA’s advisory group that supports the industry’s efforts in ICAO to develop a global MBM.
Significant progress was made in 2016 on the historic 39th Assembly Resolution and we will continue to involve ourselves closely in the process.

As an expanding and growing airline, we will likely need to offset a proportion of our emissions post 2020. However, our investment in biofuels and efficient aircraft such as the Airbus A350 and Boeing 777-9X will help reduce our emissions and offset obligations.

Global Efforts by the Aviation Industry in Reducing Emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Cathay Pacific as a Founding member of the Aviation Global Deal Group</td>
</tr>
<tr>
<td>2009</td>
<td>The aviation industry committed to new and ambitious targets for emissions reductions through IATA</td>
</tr>
<tr>
<td>2010</td>
<td>Monitoring of CO₂ data began in compliance with the EUETS</td>
</tr>
<tr>
<td>2011</td>
<td>Cathay Pacific appointed to IATA Climate Change Task Force</td>
</tr>
<tr>
<td>2012</td>
<td>CCTF completed extensive work around the implementation of CNG 2020</td>
</tr>
<tr>
<td>2013</td>
<td>The 38th ICAO Assembly agreed to proceed with the development of a global market-based measure for international aviation industry emissions</td>
</tr>
<tr>
<td>2014/15</td>
<td>GMTF and working group meetings to discuss details of the global MBM</td>
</tr>
<tr>
<td>2016</td>
<td>The 39th ICAO Assembly agreed on a new global market-based measure (GMBM) to control CO₂ emissions from international aviation</td>
</tr>
</tbody>
</table>
In 2007, Cathay Pacific launched a carbon offset programme, FLY greener, which is the first by an Asian airline. The programme is part of our ongoing effort to engage with passengers on issues with regards to climate change.

Passengers can contribute to projects that reduce CO₂ emissions, and increase their awareness on climate change issues. More information on this programme including the projects we offer and our unique corporate carbon offset programme for corporate clients, can be found at www.cathaypacific.com/flygreener.

Based on carbon emissions calculated for the specified flights, the attributable monetary contributions go directly to fund third-party validated projects that help to offset the carbon dioxide generated by those flights. All of the projects we offer are certified under the Gold Standard to ensure that they are verifiable, credible and make a difference to local communities and the environment.

In 2016, 2,900 tCO₂ were offset by our passengers, including several companies in Hong Kong. Cathay Pacific and Cathay Dragon also offset the CO₂ impacts of staff travelling on business, amounting to 11,200 tCO₂ at an approximate cost of HK$295,000 in 2016.
Clean and Efficient Cooking and Heating Project, China

Located in the rural areas of Shanxi Province, China, this fuel-switching project reduces greenhouse gases (GHGs) by replacing coal with renewable biomass on a household level. More than 7,000 inefficient coal burning stoves were replaced with highly efficient ones that use agricultural residue, which would have otherwise been burned in the fields as waste. The GHG reductions were approximately 82,000 tonnes per year. Another benefit was improved indoor air quality as less fumes was produced due to more efficient combustion. By using agricultural waste as a source of fuel, families also save on fuel spending, allowing for better use of family income.

InfraVest Changbin and Taichung bundled Wind Farms Project, Taiwan

Two wind farms consisting of 65 wind turbines along the west coast of Taiwan generated an annual clean electricity equivalent to 110,000 households’ demand for a year. The project reduced GHG emissions by 370,000 tonnes per year and helped to improve local air quality, through reduced air pollutants such as sulphur dioxide and nitrogen oxides. This project created a number of employment opportunities in support of the operation of the wind farms. Increased public interest in the wind farms inspired local guided tours of the facility.

Want to find out more? Go to our video on the right.

Our video, A Greener Flight with our Airbus A350s.